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Introduction

Statistical methods for the analysis of data can be
classed as descriptive or as probabilistic. The former
methods include tabulation and graphical display, of
great importance both in detailed analysis and also in
presentation of conclusions. Probability enters statis-
tical analysis in various ways. The most obvious is that
one recognizes explicitly that conclusions drawn from
limited data are uncertain and that therefore it is a
good thing to measure and control probabilities of
drawing the wrong conclusions, partly, but by no
means solely, as a precaution against overinterpreta-
tion. The statistical significance test is the most widely
known device concerned with such probabilities and
is the subject of the present paper.
The nature, use and misuse of significance tests

have been much discussed in both statistical and
nonstatistical circles. The view taken in this paper is
that such tests play an important but nevertheless
strictly limited role in the critical analysis of data.
There is an extensive mathematical literature on

the theory of such tests and on the distributions
appropriate for special tests. The mathematics can
largely be separated from critical discussion of the
underlying concepts, that being the concern of the
present paper.

Nature of statistical significance tests

The first element in a significance test is the formula-
tion of a hypothesis to be tested, often called the null
hypothesis. It may help to consider first how to pro-
ceed when random variation can be ignored. We
might, for instance, be interested in a hypothesis
about how some biological mechanism 'really works'.
We would do the following:

(i) Find one (or more) test observations (or sets of
observations) whose values can be predicted from the
hypothesis under examination. For instance the
hypothesis might predict that a certain set of relation-
ships between 'response' and log dose are in fact
parallel straight lines. The test observations would
then be such as to allow assessments of nonlinearity
and nonparallelism.

(ii) Make the relevant observations.
(iii) If the test observations do not agree with the

predictions, the hypothesis is rejected, or at least
modified. If the test observations agree with the
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prediction, we conclude that the data are, in this
respect, consistent with the hypothesis. Note,
though, that we cannot conclude that the hypothesis
is true, because there may be other hypotheses that
would have led to the same test data.
While the general idea of significance tests follows

essentially the same steps (i-iii) there are, however,
two important differences. First the observations are
subject to non-trivial variability, natural random
variability and/or measurement 'errors' of various
kinds. Secondly the hypotheses are typically not
scientific (biological) hypotheses, but rather
hypotheses about the values of parameters describing
'true' values applying to populations of measure-
ments. Of course, in some fields at least, these
parameters will be linked to scientific models or
interpretations of the system under study.
We now adapt the procedure (i)-(iii) as follows.
(i) Find a test statistic whose probability distri-

bution when the null hypothesis is true is known, at
least approximately. Also the test statistic is to be
such that large, or possibly extreme (large or small),
values of the statistic point to relevant departures
from the null hypothesis.

(ii) Calculate the value of the test statistic for the
available data.

(iii) If the test statistic is in the extreme of its
probability distribution under the null hypothesis,
there is evidence that the null hypothesis is untrue. If
the test statistic is in the centre of its distribution, the
data are consistent with the null hypothesis.
More quantitatively, we calculate from the distri-

bution of the test statistic, the probability P that a
deviation would arise by chance as or more extreme
than that actually observed, the null hypothesis being
true. The value of P is called the (achieved) signifi-
cance level. If P < 0.05, we say the departure is
significant at the 0.05 level, if P < 0.01 that the
departure is significant at the 0.01 level, and so on. In
applications it is nearly always enough to find P fairly
roughly.
A natural and fundamental question now arises.

Why consider at all deviations more extreme than
that observed? Why assess a hypothesis partly on the
basis ofwhat has not been observed.' One answer is as
follows. Suppose that we were to accept the observa-
tions as just decisive evidence against the null
hypothesis. Then we would be bound to accept more
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extreme data as evidence against that hypothesis.
Therefore P has a direct, though hypothetical,
physical interpretation. It is the probability that the
null hypothesis would be falsely rejected when true,
were the data just decisive against the hypothesis.
Note particularly that the interpretation is hypo-
thetical. In the first place, at least, we use P as a
measure of evidence, not as a basis for immediate
tangible action (see also Appendix E).

A simple example

Consider the following much simplified example. To
compare a drugD with a placebo C, 100 patients each
receive both drugs, in random order and with appro-
priate design precautions. For each patient an assess-
ment is made as to which is the more effective
treatment, ties not being allowed. It is observed that
for 60 patients D was better and for 40 patients C was
better.
Now the null hypothesis would typically be that the

long runr proportion of preferences forD is 1/2. Other
null hypotheses could, however, arise; for instance if
a large independent study under comparable con-
ditions had shown that 80% preferred D, another
interesting null hypothesis would be that the long run
proportion in the present study is 0.8.
The test statistic is the observed number of prefer-

ences for D. Under the 50% null hypothesis the
probability distribution of the number of preferences
forD can be found; independence of the individuals is
assumed. The distribution, which is roughly a normal
distribution of mean 50 and standard deviation 5,
is that for the number of heads observed in 100
tosses of a 'fair' coin. The distribution could also be
found by computer simulation although, except
possibly for didactic reasons, this is a poor idea when
a mathematical treatment is available. In complicated
problems however, where a mathematical treatment
is not available, it is a good idea to simulate data from
a 'null' system close to that under study. Conformity
of the 'real' with the 'simulated' data can be examined
at least informally.
Now the probability P of a deviation as or more

extreme than that observed is, at first sight, the
probability of observing 60, or 61, or. . . ,or 100 and
is about 0.029.
But there is a difficulty here; what if we observed

not 60 preferences forD and 40 for C but 40 forD and
60 for C? If under those circumstances we would still
have examined consistency with the null hypothesis,
our significance level P must take account of extreme
fluctuations in both directions, the test becomes a
so-called two-tailed or two-sided test and in this
instance P becomes 2 x 0.029 - 0.057.
That is we have

Pone-sided =prob {60, or 61, or. ,or 100 0.029,
Ptwo-sided = prob (60, or 61, or. . . ,or 100; 0, or.

or 39, or 40; 0.057

There has been some controversy as to which is
appropriate when a priori we expect any difference to
favour D and this expectation is confirmed in the
data. To an appreciable extent the matter is one of
convention. In reading the literature, check to see
which has been used. In the present paper we use
two-sided tests and leave the matter with the
following brief comments.

(a) In some problems the two-sided P is clearly
appropriate, because neither direction of e.fect is
biologically impossible.

(b) It will be rather rare that a substantial observed
effect in an unexpected direction can be dismissed
without discussion. Further, retrospective explana-
tions of unexpected effects can often be put forward.
These are the arguments for regarding the two-sided
test as the one for routine use.

(c) It is largely conventional whether one says that
the two-sided P is say 0.1 and the effect is in the
expected (or unexpected) direction, or whether one
quotes the one-sided P of 0.05.

Section 3 describes the nature of null hypotheses,
and we then go on to discuss various points of inter-
pretation.

The nature of null hypotheses

Clearly for significance tests to be of much use, sens-
ible and interesting null hypotheses should be tested.
A full cla .ification of null hypotheses will not be
attempted, but it is useful to have the following types
in mind:

(i) null hypotheses of a technical statistical charac-
ter to the effect that such and such special assump-
tions are satisfied, such as that distributions have a
particular mathematical form or that preliminary
transformation of data is unnecessary. We do not
consider these further here;
(ii) null hypotheses closely related to some scien-
tific hypothesis about underlying biology, such as,
in genetics, that two genes are on different
chromosomes. These are of critical importance in
certain kinds of research, but are perhaps of less
direct importance in clinical trials, although in
complex trials with elaborate data, it may be
feasible to formulate such hypotheses;
(iii) null hypotheses of homogeneity. These
typically are that a certain effect is the same, for
example in several independent studies or in differ-
ent subgroups of patients. An emphasis in statis-
tical work is frequently on designing and analysing
individual investigations so that these investiga-
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tions, in isolation, lead to convincing conclusions.
Yet, clearly, judgment about any issue should
depend on all available information; the most
convincing conclusions are those backed by several
independent studies and preferably by different
kinds of evidence. Tests of homogeneity play some
role here. It is a reasonable comment on some
statistical analyses that not enough emphasis is
placed on the combination of evidence from
several sources.
(iv) Finally, and perhaps most commonly, there
are hypotheses that assert the equality of effect of
two or more alternative treatments, for example, a
drug and a placebo. One way of looking at such
hypotheses is that they divide the possible true
states of affairs into two (or more) qualitatively
different regimes. So long as the data are consistent
with the equality of two treatments, the data do not
firmly establish the sign of any difference between
them. From this point of view significance tests
address the question: how firmly do the data estab-
lish the direction of such and such an effect?

Some comments on interpretation

There follow a number of miscellaneous comments
on the interpretation of significance tests.

(i) There are clear distinctions between statistical
significance and the more important notions of bio-
logical significance and practical significance. Statis-
tical significance is concerned with whether, for
instance, the direction of such and such an effect is
reasonably firmly established by the data under
analysis. Biological significance is concerned with
underlying scientific interpretation in terms of more
fundamental mechanisms. Practical significance is
concerned with whether an effect is big enough to
affect practical action, e.g. in the treatment of
patients. The three kinds of significance are linked
but in a relatively subtle way.

(ii) Failure to achieve an interesting level of statis-
tical significance, i.e. the observation of values
reasonably consistent with the null hypothesis, does
not mean that practically important differences are
absent. Thus in the Example of Section 2 the observa-
tion of55 preferences forD and 45 forC would lead to
Ptwo-sided = 0.37 and to the conclusion that the data are
just such as to be expected if the null hypothesis were
true. On the other hand it can be shown that long run
effects ranging from 45% to 65% preferences for D
are consistent with the data (at the 5% significance
level) and, depending entirely on the context, these
might correspond to differences of practical impor-
tance. By constrast with 1000 patients a split 550 forD
and 450 for C would be a highly significant departure
from the null hypothesis (two-sided = 0.0018), the
range of preference for D consistent with the data is

from 52% to 58% and yet it might well be that these
would all be of little practical importance. In this
instance the direction of the effect is firmly estab-
lished but its magnitude is such as to make the effect
of little practical importance; such instances of
observational overkill are probably rare in clinical
trials.

(iii) The strong implication of (ii) is that, for
important effects at least, it is necessary to calculate
so-called confidence limits for the magnitude of
effects and not just values of P. This is of crucial
importance. It is very bad practice to summarise an
important investigation solely by a value of P.

(iv) Failure to achieve an interesting level of
significance in a study does not mean that the topic
should be abandoned. Significance tests are not
intended to inhibit the free judgment of investigators.
Rather they may on the one hand warn that the data
alone do not establish an effect, and hence guard
against overinterpretation and unwarranted claims,
and on the other hand show that an effect is reason-
ably firmly proved.

(v) If an effect is established as clearly correspond-
ing to a bigger difference than can be accounted for by
chance, two conditions have to be satisfied before the
difference can be given its face-value interpretation
as, say, an improvement due to the new drug under
test. One condition is that the calculation of statistical
significance is technically sound in that no unreason-
able detailed assumptions have been made in
computing the probabilities. The most common fault
is, in effect, to overlook an important source of
variability and thereby to underestimate the un-
certainty in the conclusions. It is a key role of careful
design to ensure that, so far as is feasible, all major
sources of uncertainty are controlled and that their
magnitude can be assessed. Specialised statistical
advice may be needed on this point. This is related to
the second and more serious possibility that the effect
is a bias or systematic error and not a genuine
'treatment' effect. Biases are relatively much more
likely in observational studies, and comparisons
involving historical rather than concurrent controls,
than in carefully controlled experiments involving
randomisation and, so far as feasible, firmly enforced
'blindness'. To a very limited extent biases can be
investigated and corrected by more elaborate statisti-
cal analysis (see Appendix D).

(vi) Pooling of information from independent
studies is very important, subject to tests of homo-
geneity. If there is clear evidence of heterogeneity
between studies this needs to be explained in subject-
matter terms if at all possible.

(vii) If a number of independent studies are done,
possibly in different centres, and only those yielding
an effect significant at say the 0.05 level are reported,
it is clear that a distorted picture may emerge. The
criterion for publication should be the achievement of
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reasonable precision and not whether a significant
effect has been found; it may be, however, that
investigations yielding interesting new conclusions
merit publication in greater detail than investigations
whose outcome is predominantly negative or con-
firmatory, but that is a separate issue.

The choice of tests and levels: multiple testing: choice
of sample size

A question frequently asked is 'what significance
level should be used, 0.05, 0.01 or what?' The view
taken in the previous discussion is that the question
does not arise, at least in the sense thatwe may use the
observed value ofP as a measure of the conformity of
the data with the null hypothesis. What overall
interpretation is made or what practical action is
taken depends not only on the significance level P,
but also on other information that may be available,
including biological plausibility on the magnitude of
effect present and, in a decision-taking context, on
the consequences of various modes of action.

Nevertheless some rough guide for qualitative
interpretation is useful and the following seems fairly
widely accepted, sensible, and leads to some
standardization of procedure:

P I- : accord with the null hypothesis is as good
as could reasonably be expected;

P'- : there is, for most purposes, overwhelming
100 evidence against the null hypothesis;

intermediate: there is some evidence against the null
hypothesis.

Values ofP should be quoted approximately and rigid
borderlines avoided. Thus in terms of the interpreta-
tion of data it would be absurd to draw a rigid border-
line between P = 0.051, not significant at the 0.05
level, and P = 0.049, significant at the 0.05 level, even
though in decision-making contexts with strictly
limited data such borderlines do have to be adopted.
Some special problems arise when several statis-

tical tests are applied to the same data. We can dis-
tinguish a number of situations:

(i) Scientifically quite separate questions can be
addressed from the same data. This raises no
special problems. Note, however, that if one of the
analyses led to doubts about data quality, the other
analyses would become suspect too.

(ii) The data may be searched by examining
different kinds of effect and ultimately focusing
attention on the most significant. For instance one
might classify the patients in various ways (age, sex,
etc.) to look for differential effects. Or we may,

entirely legitimately, examine several measures of
response: death rate (all causes), death rate
(particular causes), 'minor' critical event rate, and
so on. Quite clearly if many different effects are
examined it is quite likely that a superficially quite
significant result will emerge. Individual P values
will apply to each effect in isolation, but to judge
whether there is overall evidence of an effect, a
so-called allowance for selection is essential in
judging significance. A rough rule is to multiply the
smallest P value by the number of effects examined
before selecting the most significant. For instance
suppose that an overall analysis of a clinical trial
comparing drug D with placebo C shows little
evidence of a difference. Analyses are made for
men and women, for 'young' and 'old' patients and
for two different Centres, say taking the 8 com-
binations of sex-age-Centre. The older women at
Centre 2 show a difference significant at about the
0.05 level. But this is the largest out of 8 com-
parisons and therefore, after the rough correction
for selection, is to be assigned a value of P of about
8 x 0.05 = 0.4, i.e. it is just such as would be
expected by chance. Note that if the investigation
had been set up specifically to investigate older
women in Centre 2, P = 0.05; the magnitude of the
effect is the same in both context. This general
point is especially important because major trials
are complex with many measures of response,
categories of patient etc.

(iii) The third possibility is that essentially the
same scientific issue is tackled by trying a number
of tests similar in spirit but different in detail. Thus
to compare two samples one might consider the t
test, the sign test, the Wilcoxon test, the Fisher and
Yates score test, and so on. Each is appropriate
under slightly different conditions and usually,
except possibly for the sign test, the results will be
very similar; the differences arise primarily from
the relative weights attached to extreme observa-
tions. This blunderbuss procedure of trying many
tests is wrong if what is done is concealed. In
principle, for each specific scientific question there
should be a single test in the light of the error struc-
ture present. If a search through a number of test
statistics is carried out, an allowance for selection is
essential. The simple correction outlined above is
much too crude, being really appropriate for statis-
tically independent tests rather than for closely
related tests. If the procedure were used, which is
not recommended, computer simulation to attain
the appropriate correction for selection seems the
most practicable procedure.
(iv) A rather more specialised issue concerns the
normal use of significance tests in trials in which the
possibility of stopping the trial before its nominal
completion date is determined at least in part by
formal data-dependent rules. We regard this topic,
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in its practical and theoretical aspects, as outside
the present discussion.
(v) A simpler issue is the use of hypothetical
significance test calculations to determine an
appropriate scale of investigation, e.g. the number
of patients or study duration. The argument is to
require that if a difference of an amount judged
important is present, then the probability often
denoted by A3 should be at least say 0.9 that a
difference significant at the 0.05 level often
denoted by a is achieved; the values of, and a can
of course be altered. Often an estimate has to be
made of such matters as the overall critical event
rate likely to be encountered. In many ways a
simpler approach is to work with the standard error
of the estimated difference likely to be achieved,
aiming to control this a suitable level. Some
calculation of this sort is highly desirable to prevent
the setting up of investigations either absurdly
small or on an absurdly extravagant scale. Several
somewhat arbitrary elements are involved in the
above calculations: in principle the scale of investi-
gation could be settled by decision analysis, costing
the effort spent in the study and the consequences
of wrong decisions. This is but part of the broader
issue of the role of formal decision analysis in
medical work, and a briefcomment on this follows.

Relation with decision analysis

An accompanying paper in this series (Spicer, 1982)
deals with the interesting topic of decision analysis in
a medical context. Superficially there is a connexion
between the so-called two decision problem, i.e.
deciding between the two alternative courses of
action, and the significance test of an appropriate null
hypothesis. In fact, at least from the viewpoint of the
present paper, the procedures are best regarded as
quite distinct. The significance test is concerned with
some aspects of assessing information provided by an
investigation. A decision or diagnostic rule indicates
an appropriate action, based on a synthesis of the
information provided by data, of so-called prior
information available from other sources and of utili-
ties measuring the consequences of various actions in
given circumstances. The decision rule requires a
greater variety of quantitative input than does a
significance test and in a sense reaches a corres-
pondingly stronger conclusion.

Reference
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Appendix

Some further issues, including some idealised mis-
conceptions

There follow a few statements involving significance
tests, together with brief comments. Probably none
of A-C has ever been made in quite the form given
here, but the statements may nevertheless pinpoint
potential errors of interpretation. D and E outline
some further issues of importance, marginal to the
main theme of the paper. By 'effect' is meant, for
example, a difference in survival rate as between two
alternative regimes. The null hypothesis is that this
difference is zero.

A. The effect is significant at the1% level: that is, the
probability ofthe null hypotheses ofzero effect is only
1%. Not so! This is not what significant at the 1%
level means (see Section 2). So-called Bayesian
significance tests do allow the calculation of proba-
bilities of hypotheses being true (or false), but require
a great deal of extra information. Most of the general
points in the paper apply also to Bayesian significance
tests; see Appendix E.

B. Oftwo independent studies ofthe same topic, one
gives no significant effect and the other gives
significance at the 1% level. Thus the two studies are
inconsistent. Not necessarily so! A modest effect and
a rather larger effect in the same direction will often
satisfy the conditions stated. The magnitudes of the
effects should be examined, and their mutual
consistency considered. This is usually done by
testing the null hypothesis of homogeneity, that the
magnitudes are equal in the two studies. Subject to
consistency, a pooled estimate of the effect can be
calculated.

C. An effect is highly significant (say atl% level) but
is unexpected and apparently inexplicable on bio-
logical grounds. There is thus a conflict between statis-
tics and biology; biology should win. Up to a point,
this is reasonable enough. The conflict is not, how-
ever, between statistics and biology, but between the
specific data and the biology: the statistical analysis
serves to make the conflict more explicit and rather
less a matter of personal judgment than might
otherwise be the case. Resolution of the conflict will
often require new data but sometimes it may be
sought on the initial data via one or more of the
following: (i) there is a bias (systematic error) in the
data; (ii) the calculation of P is in error, e.g. by
overlooking some source of variability; (iii) an
extreme chance fluctuation has arisen; (iv) the initial
biological understanding is faulty. Possibilities (i) and
(ii) can be the subject of further statistical investi-
gation. Possibility (iii) is unverifiable. As to (iv), the
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traffic between biological understanding and more

empirical studies should be two-way; to disregard all
empirical studies in conflict with prior expectation
would be very dangerous.

D. Biases can be more important than random
errors and biases are not susceptible to statistical
analysis. Biases are indeed likely to be relatively
important in large studies, where the effect ofrandom
variation is controlled by the averaging of responses

over a large number of patients. It is one of the
primary objectives of careful design to eliminate
biases, by balancing or by randomizing (with con-

ceaiment) all important sources of variability. In
observational studies, for instance when historical
controls are used instead of the much more desirable
randomized concurrent controls, biases are appreci-
ably more likely and certainly the main sources of
potential bias should be examined and if necessary

adjustments calculated. In broad terms, if the source

of bias can be identified and is short of a total con-

founding with the treatment effect under study, then
there is a possibility of largely removing the bias by
suitable statistical analysis. On general grounds it is,
of course, very undesirable that interpretation should
depend in an essential way on elaborate analysis:
direct appreciation of the meaning and limitations of
the data is thereby inhibited.

Biases are of three broad types: (i) those arising
from systematic differences between the two (or
more) arms of the trial, involving patient character-
istics on entry; (ii) those concerned with the
procedures for measurement of response and other
variables; (iii) those concerned with the implementa-
tion of the treatment and with the care of the patient
during any subsequent period of observation.

Randomization is intended to ensure the absence
of the first kind of bias. Sometimes, however,
randomization may be defective; further, in observa-
tional studies appreciable differences may arise
between a new 'treated' group and a historical control
group and these will need adjustment by some

process of standardization, for example by analysis of
covariance. Significance tests are now more complex
but not different in principle. A major concern is that
once it is clear that two groups are unbalanced with
respect to an observed property (e.g. age or sex) the
possibility of a difference with respect to an un-

measured though important property is enhanced.
This would lead to a bias not removable by analysis.

Biases connected with measurement can arise
either when 'blindness' is impossible or seriously
ineffective or when different observers, laboratories,
etc. are involved. It is difficult to suggest an effective
practical method of dealing with the first kind of bias:
independent confirmation of particularly sensitive
observations may sometimes be feasible, possibly on
a sample of patients. Interobserver and inter-

laboratory systematic differences can in principle be
estimated and eliminated, provided of course the
rather disastrous situation is avoided wherein, say
biochemical measurements in the two treatment arms
are made in two different laboratories. External
evidence on the degree of standardization achieved
will always be valuable.

Biases of the third kind, concerned with treatment
implementation, are in some ways the most awkward.
A conventional answer is that the usual comparison in
a randomized clinical trial tests the total con-
sequences of being assigned to one treatment arm
rather than to the other. Thus subsidiary effects, such
as differences in general level of care, different levels
of compliance, unacceptability of side effects, etc. are
part of the consequences of the treatments under
study. From this point of view, biases are spirited
away by definition. It is clear that this approach may
sometimes be quite unsatisfactory, both scientifically
and for decision making about the treatment of
individual patients. If the conditions of this
experiment are quite different from those obtaining
in practical use, what is sometimes called an external
systematic error arises. Practical ways of dealing with
these matters of 'treatment bias' are not well
developed. In principle, if properties associated with
treatment administration and subsequent care can be
measured, they may be either deliberately varied by
design or alternatively measured for each patient or
for small groups of patients and their effect on the
major response assessed by suitable analysis. The
difficulties of measuring accurately such aspects as
compliance are well known.

E. The Bayesian approach to statistical tests allows
the incorporation of external evidence, that is always
available, and avoids the conceptual difficulties of
ordinary significance tests. It would be out of place in
the present paper to write at length on the founda-
tions of statistical inference. These foundations have
for many years been under active discussion and
debate: such discussion should be taken as evidence
of the intellectual vigour of the subject and not at all
as implying an unsoundness in application.

Briefly, significance tests as described in the main
part of the paper aim to summarise what the data tell
about consistency with a hypothesis or about the
direction of an effect. The P-value has, before action
or overall conclusion can be reached, to be combined
with any external evidence available and, in the case
of decision-making, with assessments of the con-
sequences of various actions. Clearly the P-value is a
limited aspect: note also point (iii) of some comments
on interpretation where the importance of calculating
limits of error for the magnitude of an effect is
stressed.

It appears superficially very attractive to
strengthen interpretation and to bring in the external
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information, by use of the so-called Bayesian
approach. In my opinion, there is room for different
approaches in different contexts, but the arguments
are fairly persuasive against the Bayesian tests in most
applications to the analysis and interpretation of
data. First it may often help to keep separate the
impact of data and external information. Secondly, to
put the external information in the required quanti-
tative form raises formidable conceptual and practical
difficulties. (In some cases, such as certain problems

of diagnosis, external information is in the form of a
statistical frequency, and then there is no dispute that
the Bayesian approach should be applied.)

Finally in problems in which the direction of an
effect is under study and the external information is
relatively weak, the one-sided P value is approxi-
mately the (Bayesian) probability that the time effect
has the opposite sign to the effect in the data and the
two approaches are largely reconciled.


